
EXAMPLE MODELING RESULTS

CURRENT & FUTURE WORK

� Enhance the remapping process
� Refine numerical procedures for the downscaling process through MM5
� Perform extended simulation: Multi-episodes
� Perform extensive statistical comparison among different future scenarios
� Use the Decoupled Direct Method (DDM) combined into CMAQ (Napelenok

et al., 2005)  to calculate the sensitivity of pollutant (both gaseous and   
particulate matter) concentration to emissions (in addition to concentration)
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INTRODUCTION

Precise forecasting of future climatic conditions has typically been difficult 
due partly to the presence of large uncertainties in estimating various factors 
that can affect climate, e.g. emissions released into atmosphere from natural 
sources and human activities.   This leads to an unclear level of uncertainty
in evaluating future regional air quality which are dependent on both 
meteorology and emissions in the future.  In this modeling study, a paradigm 
of regional air quality modeling over the continental US has been set up for 
control-year and future-year (~mid-century) cases.  Emissions inventory from 
the US EPA Clear Air Interstate Rule (CAIR) (US EPA, 2005) is adopted and 
processed by the SMOKE program (CMAS, 2005).   Two types of meteorolo-
gical/climate data are used: a) From the NASA GISS global climate model 
(GCM) and b) From the MIT IGSM GCM (Prinn et al., 1998).  The former 
dataset gives the base or nominal climate conditions driven by the IPCC’s
SRES A1B emissions scenario (IPCC, 2001) and was downscaled to a
regional through the PSU/NCAR MM5 model (MM5, 2005) (Leung et al., 
2005).  The latter dataset is used to suggest uncertainty in future climate 
change, which is then incorporated into the modeling through the following 
two steps: 1) numerically mapping uncertainty in mean values of a 
meteorological set of interest (e.g. monthly mean temperature) onto the 
nominal future climate conditions and 2) meteorological downscaling to the 
regional scale using MM5.  
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b) MIT IGSM Components
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f) CMAQ Modeling Domain 
a) Modeling Setup

� 147 x 111 grids
� 9 vertical layers
� 36-km grid size
� Continental US +   

Parts of CAN and MX
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c) PDFs of Global Mean Surface 
Temperature Change (by 
IGSM) from 1990 to 2100

Expansion of 2D IGSM output into 3D:
1) Write a 3D time-dependent variable of interest (“a”) 

using Reynolds decomposition (m = monthly mean 
specifically)

2) Using MM5 proxy data to derive (a’) and (ā) for 
given months

3) Build index relations between them
4) Replace “ā” with IGSM output;
5) Reversely convert to “a” using new “ā” and “a′′′′”
6) Replace “a” in MM5 proxy 

)t,z,x,y('a)m,z,y(a)t,z,x,y(a +=

EPPA: Emissions Prediction and Policy Analysis

d) Remapping Process
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e) Downscaling Process
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g) Comparison of 5-Summer-Day 
Simulation: 

CONTROL/FUTURE/FUTURE (EXTREME)

1) Air Temperature

2) Control, ISOPRENE+TRP1

5) O3 6) PM2.5

3) Future, ISOPRENE+TRP1 4) Future (Extreme), ISOPRENE+TRP1


